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Motivation: Multi-sensor platforms
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Multi-sensor platforms are increasingly common in 

autonomous mobile robotics.

Sensors must be spatially calibrated for data fusion



Extrinsic Sensor Calibration
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Manually recovering geometric transformation between 

sensors cannot be done accurately and reliably.

We must use data-driven techniques instead.
Must use data-driven techniques for calibration



Traditional Method: Calibration Targets

4

Supervised calibration approach, often requiring specific:

• calibration targets,

• sensor configurations,

• environments or

• trajectories.

Source: KITTI dataset



State of the Art: Calibration in the Wild
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Feature-based: 2D Lidar - IMU - Stereo spatiotemporal calibration

J. Rehder, R. Siegwart and P. Furgale, "A General Approach to 

Spatiotemporal Calibration in Multisensor Systems," in IEEE 

Transactions on Robotics, 2016.

Appearance-based: 3D Lidar-2D Lidar extrinsic calibration

W. Maddern, A. Harrison and P. Newman, "Lost in translation 

(and rotation): Rapid extrinsic calibration for 2D and 3D 

LIDARs," ICRA, 2012.

Egomotion-based: extrinsic calibration between egomotion sensors

J. Brookshire and S. Teller,"Extrinsic Calibration from Per-Sensor 

Egomotion," in Robotics:Science and Systems VIII , 1, MIT Press, 

2013.



RQE Calibration: Overview
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Our approach is:

• appearance-based,

• recovers up to Sim(3) calibration parameters (3D+Scale),

• Calibrates a lidar (2D or 3D) to egomotion sensor (Camera, IMU*, 

GNS, etc.) pair,

• poses no restrictions on sensor configuration (FOV) and

• performs reliably in the wild, for a broad range of urban and 

natural environment.

Main contributions are:

• adaptation of RQE-based cost function for Sim(3) calibration,

• validation of the cost-function through simulations,

• experimental validation of the 2D Lidar to monocular camera, 

including non-overlapping FOV case, and

• motivation for the development of a fully spatiotemporal calibration 

algorithm through entropy. 



Derivation: Kinematic Chain
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Given: camera poses and associated covariance,

2D lidar measurements and

a reasonable guess for          . 

Apply kinematic chain to transform point cloud to global frame:

Have: set of 3D points                  each with covariance        , in global frame.

Want:          , from to



Key Concept: Entropy
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We use Renyi Quadratic Entropy to optimize point cloud quality.

Information Theory

Shannon Entropy:

Intuition: quantifies the 

uncertainty related with 

drawing a measurement 

from the distribution.

Statistical Mechanics

Gibbs Entropy:

Intuition: measures progress 

towards equilibrium, often 

implying uniformity.

All Renyi Entropy of order alpha are equivalent in terms of optimization:



Derivation: Cost Function
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Apply Parzen-Window Density Estimation on set                 :

Choose Renyi Quadratic Entropy (RQE), where           :

Integral for the convolution of two Gaussians has a closed form solution:

Minimize entropy with respect to calibration parameters:

.

.

.

Isotropic kernel 

capturing lidar

measurement 

uncertainty



Algorithm: Computational Enhancements
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• Computing entropy contribution of all point pairs =

• 1 minute of data for a typical 2D Lidar is more than a million points. 

Problem: the cost function is computationally expensive:

Starting cost function:

• Ignore constants and monotonic logarithm,

• Remove double-counting,

• Store points in kd-tree and only consider points within some radius:

Simplifications:

Final cost function:
controls cost function accuracy 

versus computation time



Simulations: Setup
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Egomotion sensor reports relative poses:

Rigidly attached lidar sensor:

• pseudo-random sinusoid trajectories,

• 50 mm standard deviation on position,

• 1 degree standard deviation on orientation.

• modelled as a Hokuyo UTM-30LX,

• 40 hz scan rate,

• 240 degree field of view and 20 meters range,

• angular resolution of 0.25 degrees per beam,

• 50 mm standard deviation on range measurements.

(a) Simple Room

(b) Underground 

Parking Lot

(c) Plane City (d) Quadratic Forest (e) Triangle Array



Simulations: Results
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Cost function validation: Single parameter variation with others held at 

their true value:

Global optimization: average error over 10 different trajectories. 

Translation Error: Orientation Error: Scale:



Experiments: Setup
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Hokuyo UTM-30LX lidar and PointGrey Flea3 camera; two configurations:

• 200 fps camera synced with 40 hz lidar according to ROS timestamps,

• Camera pose estimation up to scale through ORB-SLAM2 (open-source).

Data collected in a cluttered office space in MIT’s Strata Center:

(a) Overlapping FOV (b) Non-overlapping FOV



Experiments: Results
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Overlapping 

FOV

Non-overlapping

FOV

Point cloud before calibration Point cloud after calibration



Future Work: Temporal Calibration
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Sensor’s internal time-delays result in a temporal offset between data 

streams, clearly affecting the reliability of the algorithm.

Can we adapt RQE calibration to include a temporal offset parameter?

One option: pre-calibration through entropy minimization.

Sim(3) parameters at true values Sim(3) parameters away from true values

Simultaneous, spatiotemporal calibration could prove more reliable.



Conclusion
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In this paper, we show that RQE calibration can recover the Sim(3) 

calibration parameters between 2D lidars and monocular cameras. 

This appearance-base technique:

• calibrates lidars to a variety of egomotion sensors,

• operates in a broad range of structured environments,

• does not restrict sensor configuration,

• requires no preprocessing.

Future Work includes:

• implementing a fully spatiotemporal calibration algorithm,

• testing different sensor pairs,

• calibrating internal IMU parameters,

• parallelizing of cost function evaluation on GPUs,

• releasing an open-source implementation.
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