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Motivation: Multi-sensor platforms

Multi-sensor platforms are increasingly common in
autonomous mobile robotics.
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Extrinsic Sensor Calibration

Manually recovering geometric transformation between
sensors cannot be done accurately and reliably.
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Traditional Method: Calibration Targets

Supervised calibration approach, often requiring specific:

A calibration targets,

A sensor configurations,
A environments or

A trajectories.

Source: KITTI dataset
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State of the Art: Calibration in the Wild

Feature-based: 2D Lidar - IMU - Stereo spatiotemporal calibration

J. Rehder, R. Siegwart and P. Furgale, "A General Approach to
Spatiotemporal Calibration in Multisensor Systems," in IEEE
Transactions on Robotics, 2016.

Appearance-based: 3D Lidar-2D Lidar extrinsic calibration

W. Maddern, A. Harrison and P. Newman, "Lost in translation
(and rotation): Rapid extrinsic calibration for 2D and 3D
LIDARS," ICRA, 2012.

Egomotion-based: extrinsic calibration between egomotion sensors

J. Brookshire and S. Teller,"Extrinsic Calibration from Per-Sensor
Egomotion,” in Robotics:Science and Systems VIl , 1, MIT Press,
2013.
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RQE Calibration: Overview

Our approach is:

appearance-based,

recovers up to Sim(3) calibration parameters (3D+Scale),
Calibrates a lidar (2D or 3D) to egomotion sensor (Camera, IMU?*,
GNS, etc.) par,

poses no restrictions on sensor configuration (FOV) and
performs reliably in the wild, for a broad range of urban and
natural environment.
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Main contributions are:

adaptation of RQE-based cost function for Sim(3) calibration,
validation of the cost-function through simulations,

experimental validation of the 2D Lidar to monocular camera,
Including non-overlapping FOV case, and

motivation for the development of a fully spatiotemporal calibration
algorithm through entropy.
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Derivation: Kinematic Chain

Want: To,r, from £ 10 Lo, E= |z yr 2z ¢r 0r ¢r s]"

Given: camera poses and associated covariance,

Y ={y1.y2 Yk} Y& =Tk U 2 0k O k] = Tac, Qi

2D lidar measurements and 1 ,
7 ={z1,29,..., 2K}, zk:{z,(c),z,(g),.. )} [ () (n)} :

T
Pik) _ [ (n) (n) 01} .
a reasonable guess for T¢ ..

Apply kinematic chain to transform point cloud to global frame:

pik = h ' |y, B) = Ta., Toyn,p),

n n n T n 8h_1(x )|YI€7‘—‘)
s = J3MQ I 3 = 813/;; .
Have: set of 3D points x(é”)k c X each with covariance 2,(6”), In global frame.
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Key Concept: Entropy

We use Renyi Quadratic Entropy to optimize point cloud quality.

Information Theory Statistical Mechanics
Shannon Entropy: Gibbs Entropy:

Q2
H[P]=—kp ) p;logp

1=1

Intumo_n: quantifies t_he Intuition: measures progress
unce_rtalnty related with towards equilibrium, often
drawing a measurement implying uniformity.

from the distribution.

All Renyi Entropy of order alpha are equivalent in terms of optimization:
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