Entropy-Based *Sim*(3) Calibration of 2D Lidars to Egomotion Sensors

Jacob Lambert, Lee Clement, Matthew Giamou, and Jonathan Kelly MFI 2016, Baden-Baden, Germany

Motivation: Multi-sensor platforms

Multi-sensor platforms are increasingly common in autonomous mobile robotics.

Sensors must be spatially calibrated for data fusion

Extrinsic Sensor Calibration

Manually recovering geometric transformation between sensors **cannot** be done accurately and reliably.

Must use data-driven techniques for calibration

Traditional Method: Calibration Targets

Supervised calibration approach, often requiring specific:

- calibration targets,
- sensor configurations,
- environments or
- trajectories.

State of the Art: Calibration in the Wild

Feature-based: 2D Lidar - IMU - Stereo spatiotemporal calibration

J. Rehder, R. Siegwart and P. Furgale, "A General Approach to Spatiotemporal Calibration in Multisensor Systems," in *IEEE Transactions on Robotics*, 2016.

Appearance-based: 3D Lidar-2D Lidar extrinsic calibration

W. Maddern, A. Harrison and P. Newman, "Lost in translation (and rotation): Rapid extrinsic calibration for 2D and 3D LIDARs," *ICRA*, 2012.

Egomotion-based: extrinsic calibration between egomotion sensors

J. Brookshire and S. Teller,"Extrinsic Calibration from Per-Sensor Egomotion," in *Robotics:Science and Systems VIII*, 1, MIT Press, 2013.

RQE Calibration: Overview

Our approach is:

- appearance-based,
- recovers up to Sim(3) calibration parameters (3D+Scale),
- Calibrates a lidar (2D or 3D) to egomotion sensor (Camera, IMU*, GNS, etc.) pair,
- poses no restrictions on sensor configuration (FOV) and
- performs reliably *in the wild*, for a broad range of urban and natural environment.

Main contributions are:

- adaptation of RQE-based cost function for Sim(3) calibration,
- validation of the cost-function through simulations,
- experimental validation of the 2D Lidar to monocular camera, including non-overlapping FOV case, and
- motivation for the development of a fully spatiotemporal calibration algorithm through entropy.

Derivation: Kinematic Chain

Want:
$$\mathbf{T}_{C,L}$$
, from $\underline{\mathcal{F}}_L$ to $\underline{\mathcal{F}}_C$, $\mathbf{\Xi} = \begin{bmatrix} x_L & y_L & z_L & \phi_L & \theta_L & \psi_L & s \end{bmatrix}^T$.

Given: camera poses and associated covariance,

$$\mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_K\}, \quad \mathbf{y}_k = [x_k \ y_k \ z_k \ \phi_k \ \theta_k \ \psi_k]^T \to \mathbf{T}_{G, C_k}, \quad \mathbf{Q}_k$$

2D lidar measurements and

$$\mathbf{Z} = \{\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K\}, \quad \mathbf{z}_k = \{\mathbf{z}_k^{(1)}, \mathbf{z}_k^{(2)}, ..., \mathbf{z}_k^{(N)}\}, \quad \mathbf{z}_k^{(n)} = \begin{bmatrix} x_k^{(n)} & y_k^{(n)} \end{bmatrix}^T, \\ \mathbf{p}_{L_k}^{(n)} = \begin{bmatrix} x_k^{(n)} & y_k^{(n)} & 0 & 1 \end{bmatrix}^T.$$

a reasonable guess for $\mathbf{T}_{C,L}$.

Apply kinematic chain to transform point cloud to global frame:

$$\begin{split} \hat{\mathbf{p}}_{G,k}^{(n)} &= h^{-1}(\mathbf{p}_{L_k}^{(n)} \mid \mathbf{y}_k, \mathbf{\Xi}) = \mathbf{T}_{G,C_k} \mathbf{T}_{C_k,L_k} \mathbf{p}_{L_k}^{(n)}, \\ \mathbf{\Sigma}_k^{(n)} &= \mathbf{J}_k^{(n)} \mathbf{Q}_k \mathbf{J}_k^{(n)}{}^T, \ \mathbf{J}_k^{(n)} = \frac{\partial h^{-1}(\mathbf{x}_{L_k}^{(n)} \mid \mathbf{y}_k, \mathbf{\Xi})}{\partial \mathbf{y}_k}. \end{split}$$
set of 3D points $\hat{\mathbf{x}}_{G,k}^{(n)} \in \hat{\mathbf{X}}$ each with covariance $\mathbf{\Sigma}_k^{(n)}$, in global frame.

Have:

Key Concept: Entropy

We use Renyi Quadratic Entropy to optimize point cloud quality.

Information Theory

Shannon Entropy:

$$H\left[P\right] = \sum_{i=1}^{\Omega} p_i \log \frac{1}{p_i}$$

Intuition: quantifies the uncertainty related with drawing a measurement from the distribution. Statistical Mechanics Gibbs Entropy: $H[P] = -k_B \sum_{i=1}^{\Omega} p_i \log p_i$ Intuition: measures progress towards equilibrium, often implying uniformity.

All Renyi Entropy of order *alpha* are equivalent in terms of optimization:

$$H\left[P\right] = \frac{1}{1-\alpha} \log \sum_{i=1}^{\Omega} p_i^{\alpha}$$

Derivation: Cost Function

Apply Parzen-Window Density Estimation on set $\hat{\mathbf{x}}_{G.k}^{(n)} \in \hat{\mathbf{X}}$:

$$p(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^{M} \mathcal{N}(\mathbf{x} - \hat{\mathbf{x}}_i, \boldsymbol{\Sigma}_i + \sigma_{\underline{\mathbf{x}}_i}^2 \mathbf{I}).$$

Choose **Renyi Quadratic Entropy** (RQE), where $\alpha = 2$:

 $H[\hat{\mathbf{X}}] = -\log \int p(\mathbf{x})^2 d\mathbf{x}.$

capturing lidar measurement uncertainty

Isotropic kernel

Integral for the convolution of two Gaussians has a closed form solution:

$$H[\hat{\mathbf{X}}] = -\log\left(\frac{1}{M^2}\sum_{i=1}^{M}\sum_{j=1}^{M}\mathcal{N}(\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j, \mathbf{\Sigma}_i + \mathbf{\Sigma}_j + 2\sigma^2 \mathbf{I})\right).$$

Minimize entropy with respect to calibration parameters:

$$\boldsymbol{\Xi}^* = \underset{\boldsymbol{\Xi}}{\operatorname{argmin}} \ H(\boldsymbol{\Xi} \mid \mathbf{Y}, \hat{\mathbf{X}}).$$

Algorithm: Computational Enhancements

Problem: the cost function is computationally expensive:

- Computing entropy contribution of all point pairs = $O(N^2)$
- 1 minute of data for a typical 2D Lidar is more than a million points.

Starting cost function:

$$H[\hat{\mathbf{X}}] = -\log\left(\frac{1}{M^2}\sum_{i=1}^{M}\sum_{j=1}^{M}\mathcal{N}(\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j, \mathbf{\Sigma}_i + \mathbf{\Sigma}_j + 2\sigma^2 \mathbf{I})\right)$$

Simplifications:

Ignore constants and monotonic logarithm,

ΛΛ

ΛΛ

- Remove double-counting,
- Store points in kd-tree and only consider points within some radius: $\mathcal{N}(\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j, \boldsymbol{\Sigma}_i + \boldsymbol{\Sigma}_j + 2\sigma^2 \mathbf{I}) \approx 0 \text{ if } ||\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j|| \geq 2k \left(\max\left(\lambda_1(\boldsymbol{\Sigma}_i), \lambda_1(\boldsymbol{\Sigma}_j)\right) + \sigma^2 \right)$

Final cost function:

controls cost function accuracy versus computation time

$$H[\hat{\mathbf{X}}] = -\sum_{i=1}^{M} \sum_{j=i}^{M} \mathcal{N}(\hat{\mathbf{x}}_{i} - \hat{\mathbf{x}}_{j}, \boldsymbol{\Sigma}_{i} + \boldsymbol{\Sigma}_{j} + 2\sigma^{2}\mathbf{I})$$

Simulations: Setup

Egomotion sensor reports relative poses:

- pseudo-random sinusoid trajectories,
- 50 mm standard deviation on position,
- 1 degree standard deviation on orientation. Rigidly attached **lidar sensor:**
- modelled as a Hokuyo UTM-30LX,
- 40 hz scan rate,
- 240 degree field of view and 20 meters range,
- angular resolution of 0.25 degrees per beam,
- 50 mm standard deviation on range measurements.

(a) Simple Room

(b) Underground Parking Lot

(c) Plane City

(d) Quadratic Forest

Simulations: Results

Cost function validation: Single parameter variation with others held at their true value:

Global optimization: average error over 10 different trajectories.

	Average absolute error – μ (σ)									
Environment	x [mm]	$y \; [\mathrm{mm}]$	$z \; [\mathrm{mm}]$	$\phi \; [\mathrm{deg}]$	$\theta \; [\mathrm{deg}]$	$\psi \; [\text{deg}]$	Scale $[\times 10^{-3}]$			
Simple Room	2.8(2.5)	3.1(2.5)	5.2(3.5)	0.22(0.12)	$0.051 \ (0.043)$	$0.24 \ (0.15)$	$0.33 \ (0.30)$			
Underground Parking Lot	4.5(4.4)	4.8(4.1)	5.2(4.5)	0.37~(0.22)	$0.11 \ (0.11)$	$0.37\ (0.17)$	1.2 (0.9)			
Plane City	4.1(2.1)	5.2(4.2)	4.0(3.9)	0.38~(0.23)	$0.18\ (0.06)$	0.35~(0.23)	0.69(0.55)			
Quadratic Forest	4.6(2.6)	3.9(1.6)	2.9(3.3)	0.32~(0.20)	$0.074\ (0.54)$	0.35~(0.27)	$0.73\ (0.32)$			
Triangle Array	3.0(1.9)	2.9(1.6)	4.6(3.5)	$0.64 \ (0.60)$	$0.10\ (0.07)$	$0.61 \ (0.58)$	$0.47 \ (0.26)$			

Experiments: Setup

Hokuyo UTM-30LX lidar and PointGrey Flea3 camera; two configurations:

(a) Overlapping FOV

(b) Non-overlapping FOV

- 200 fps camera synced with 40 hz lidar according to ROS timestamps,
- Camera pose estimation up to scale through **ORB-SLAM2** (open-source). Data collected in a cluttered office space in **MIT's Strata Center**:

Experiments: Results

		Calibration results								
		x [mm]	$y \; [\mathrm{mm}]$	$z \; [m mm]$	$\phi \; [deg]$	$\theta [\mathrm{deg}]$	$\psi \ [deg]$	Scale $[\times 10^{-3}]$		
Overlapping	Initial Guess	160.0	0.0	-50.0	0.400	-90.00	0.00	-90.00		
	Trial I	-178.2	-3.8	-45.8	90.58	-0.10	-90.74	0.506		
FOV	Trial II	182.5	-2.8	-50.9	-90.22	0.14	-90.12	0.509		
FUV	Trial III	173.6	-2.9	-47.8	89.84	-0.27	-90.04	0.506		
	Trial IV	187.0	-4.9	-54.2	-89.49	-0.02	-90.27	0.511		
	μ (σ)	180.3(5.0)	-3.6 (0.8)) -49.7 (3.2)	-90.03 (0.41)	0.06(0.15)	-90.29 (0.27)	0.508(0.002)		
		Calibration results								
		x [mm]	$y \; [\mathrm{mm}]$	$z \; [\mathrm{mm}]$	$\phi \; [\mathrm{deg}]$	$\theta [\mathrm{deg}]$	$\psi \; [\mathrm{deg}]$	Scale $[\times 10^{-3}]$		
Non-overlapping	Initial Guess	50.0	0.0	-250.0	180.00	0.00	-90.00	0.500		
FOV	Trial I	45.2	0.5	-202.1	180.13	-1.11	-88.89	0.2149		
FUV	Trial II	42.2	-1.2	-202.8	180.73	-1.29	-88.93	0.2159		
	Trial III	44.0	0.2	-204.2	180.43	-1.78	-88.89	0.2156		
	μ (σ)	43.8 (1.2)	-0.2 (0.8)	203.0(0.85)	180.43 (0.24)	-1.39 (0.28)	-88.90 (0.02)	0.2156 (0.0005)		

Point cloud before calibration

<u>20</u>

Point cloud after calibration

Future Work: Temporal Calibration

Sensor's internal time-delays result in a **temporal offset between data streams**, clearly affecting the reliability of the algorithm.

Can we adapt RQE calibration to include a temporal offset parameter?

One option: pre-calibration through entropy minimization.

Simultaneous, spatiotemporal calibration could prove more reliable.

Conclusion

In this paper, we show that **RQE calibration** can recover the *Sim*(3) calibration parameters between 2D lidars and monocular cameras.

This appearance-base technique:

- calibrates lidars to a variety of egomotion sensors,
- operates in a broad range of structured environments,
- does not restrict sensor configuration,
- requires no preprocessing.

Future Work includes:

- implementing a fully spatiotemporal calibration algorithm,
- testing different sensor pairs,
- calibrating internal IMU parameters,
- parallelizing of cost function evaluation on GPUs,
- releasing an open-source implementation.

Thanks! Questions?

Me

INSTITUTE FOR AEROSPACE

UNIVERSITY OF TORONTO

Email: jacob.lambert@mail.utoronto.ca Website: starslab.ca

D'AC

Matt

Entropy-Based Sim(3) Calibration of 2D Lidars to Egomotion Sensors Jacob Lambert, Lee Clement, Matthew Giamou, and Jonathan Kelly

Prof.

Kelly

Lee

MFI 2016, Baden-Baden, Germany