PROBE: Predictive Robust Estimation for Visual-Inertial Navigation

Valentin Peretroukhin, Lee Clement, Matthew Giamou, and Jonathan Kelly IROS 2015, Hamburg, Germany Visual Navigation II

Visual Inertial Navigation

Question: Are all visual features created equal?

KITTI Dataset. Sequence 2011_09_29_drive_0071.

Hypothesis: Inlier point features are not all equally informative.

Visual Inertial Navigation

Frame-to-frame visual-inertial navigation with sparse visual features.

Feature Selection

How do we deal with less informative features?

RANSAC (and variants)

- Front-end, **binary** technique
- Binary outlier rejection based on Random Sample Consensus
- Fischler (1981)

M-Estimation

- Back-end, reactive technique
- Robust cost functions reduce influence of outliers
- See Latif et al. (2013)

Feature Selection

How do we deal with less informative features?

- C (and variants)
- , **binary** technique
- lier rejection based
- m Sample
- S
- 981)

PROBE

- Hybrid, **predictive** technique
- Inflate image covariance based on a learned model from visual and inertial data
- Vega-Brown et al. (2013), Peretroukhin et al. (2015)

M-Estimat

- Back-end, reactive
- Robust cost function influence of outliers
- See Latif et al. (201

PROBE

Key Idea: $\mathbf{R} = \mathbf{R}(\phi)$

Varying image covariances.

• We perform non-linear optimization on the weighted sum of 3D errors:

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{N} \mathbf{e}_i^T \mathbf{\Gamma}^i \mathbf{e}_i$$

 Each weight is found by propagating image space covariances through a stereo camera model:

$$\mathbf{\Gamma}^{i} = f(\mathbf{R}) = \left(\mathbf{G}_{b}^{i}\mathbf{R}_{b}^{i}\mathbf{G}_{b}^{i^{T}} + \mathbf{C}_{ba}\mathbf{G}_{a}^{i}\mathbf{R}_{a}^{i^{T}}\mathbf{G}_{a}^{i^{T}}\mathbf{C}_{ba}^{T}\right)^{-1}$$

PROBE: Predicting Feature Quality

Idea: Scale image covariance as a function of a prediction space.

PROBE: Predictor Selection

Goal: Prediction space should identify moving objects, shadows, motion blur.

- We use a combination of visual and inertial predictors.
- 1. Optical Flow Variance
- 2. Inertial Magnitudes
- 3. High and Low Frequency Content
- 4. Motion Blur Score [1]
- 5. Image Entropy

[1] F. Crete et al, "The blur effect: perception and estimation with a new no-reference perceptual blur metric," Electronic Imaging 2007, vol. 6492,, Feb. 2007.

PROBE: Predictors

PROBE: Training Procedure

PROBE: Implementation $\beta_i = \left(\frac{1}{\overline{\alpha}K}\sum_{k=1}^K \alpha_k\right)^{\gamma}$ $\mathbf{x} \mathbf{R}_1$ \mathbf{R}_2 \mathbf{R}_3 $\mathbf{k}^{\mathbf{R}_{6}}$ 1. Map image feature into prediction space. 2. Compute: $\beta_i = \beta(\phi_i)$ \mathbf{R}_4 3. Set each covariance: $\mathbf{R}_i = \beta(\boldsymbol{\phi}_i) \mathbf{R}_{\text{fixed}}$ $\mathbf{k} \mathbf{R}_7$ \mathbf{R}_5

PROBE: Datasets

UTIAS Outdoor 600 m in winter environment Sparse Ground Truth RMSE

60 m in indoor lab

PROBE: Results

PROBE: Putting it all together

Summary

PROBE predicts the informativeness of visual features, scaling image covariances

- Shown to improve VINS on KITTI & experimental data relative to RANSAC
- Training done with sparse ground truth

Future Work

- New version (PROBE-GK, submitted to ICRA 2016)
 - Derivation from first principles: Full covariance learning using Bayesian framework with a predictive estimator
 - ☑ Removed necessity for ground truth.
 - ✓ Comparison to M-estimation.
- Further questions:
 - Is online learning possible?
 - How can we select **informative predictors**?

INSTITUTE FOR AEROSPACE STUDIES University of toronto

Thanks! Questions?

Me

Email:v.peretroukhin@utoronto.caWeb:http://starslab.ca

PROBE: Predictive Robust Estimation for Visual Inertial Navigation

D'O

Matthew

Prof.

Kelly

.ee

PROBE: Predictive Robust Estimation for Visual-Inertial Navigation

Valentin Peretroukhin, Lee Clement, Matthew Giamou, and Jonathan Kelly starslab.ca

Additional Slides

Visual Inertial Navigation

Modern Approaches in the Literature

Forster et al.

Tsotsos et al.

Christian Forster et al., "**IMU Pre-Integration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation**", Robotics: Science and Systems (RSS) 2015.

Konstantine Tsotsos et al., "**Robust Inference for Visual-Inertial Sensor Fusion**", International Conference for Robotics and Automation (ICRA) 2015.

Introduction

VINS and Robotics

- Visual-Inertial Navigation Systems (VINS) use cameras and inertial measurement units to estimate motion.
- Sensors are complementary, relatively cheap, and light-weight.
- VINS can be applied to many robotics applications (ground, air, human).
- Difficulty: data is high resolution and high rate.

Skybotix VI Sensor

Google Project Tango

PROBE: Motion Blur

- We quantified reprojection and tracking error with & without motion blur.
- Checkerboard corners are extracted and tracked (using KLT).
- Result: tracking and reprojection error can both be represented by larger variances in additive noise.

Flea3 @ 125Hz, VI Sensor @ 20 Hz.

PROBE: Training Procedure

2. Compute navigation estimate using feature subset, compare to ground truth, and record RMS error.

 α_i