How to Train a CAT: Learning Canonical Appearance Transformations for Direct Visual Localization Under Illumination Change

Lee Clement and Jonathan Kelly

University of Toronto, Canada

Motivation-

Visual localization under appearance change

In this work we are interested in improving the robustness of standard visual localization algorithms to appearance change such as variable illumination.

Direct vision and photometric (in)consistency

Unlike feature-based vision, direct vision relies on the photometric consistency assumption, which is commonly violated. This is especially problematic for localizing under appearance change.

Image-to-image translation

We propose a deep convolutional U-Net to learn a Canonical Appearance Transformation (CAT) that transforms images to correspond to a previously seen "canonical" appearance.

Results

Direct visual odometry

We compare the results of computing visual odometry using imagery with rapidly time-varying illumination, both with and without using a CAT model to transform the images into a static illumination condition.

Direct metric mapping and localization

We also compare the results of localizing against a map created in a static canonical condition using images captured under different illumination conditions both with and without a CAT model.

4 %

Morning

Conclusions-

Improved robustness to illumination change

Both direct visual odometry and metric mapping and localization can benefit from using CATs.

Synthetic-to-real transfer learning

We achieved limited success in transferring synthetictrained CAT models to real data. Further investigation is needed to establish the limits of transfer learning.

-Acknowledgements-

Overcast (canonical)

10 %

Sunset

Contact

Original

lee.clement@robotics.utias.utoronto.ca

1 %

Clone

- github.com/utiasSTARS/cat-net
- starslab.ca